Intensity

@ Everything so far has looked at 2nd order properties of a point
pattern: pairs of points

Equivalent to variances and covariances for quantitative data

@ What about 1st order properties, equivalent to mean ‘_gﬂ-\-\-ﬂ
. . . . AN
@ That is the intensity of the point process, A &
. #events in area dA centered at s
A(s) = lim — =
~  dA—0 dA

e Homogeneous Poisson process (CSR): R

o Plevent at s] independent of presence/absence of other events

o A(s) constant »
@ Inhomogeneous Poisson process:

e \(s) not constant*
Ta
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Estimating intensity

Y. ‘owﬁfb

i(ac Je Fohwete

H 0 :
Goal: estimate A(s) at a set of s Iocatlonﬁgg?a G‘s ho =S

rid -
& VA

use kernel smoothing, as we did to estimate g(x

bandwidth of the kernel controls smoothness of the map

o large bandwidth = smoother map
o small bandwidth = rougher (bumpier) map /%
NG .\
illustrate with ¢ = 1.5, 0 = 4.5, and o = 15 plots -

Also have to deal with edge effects
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How to choose o7

le
What looks good?  ST2e.

Simple data-based rules: Scott’s rule, 25% percentile of interpoint
distances

Cross-validation, concept: \

e omit a'point, estimate \(s) there, WaO be large
o location without a point, WaII
Two versions of cross-validation, both a-priori reasonable
o Minimize mean-square error (Diggle-Berman criterion) Same as

o Maximize data log-likelihood Cam‘t, - \JW\L'{‘-—él’O‘-’d’ A L
choose o that does this the best m——#"ﬁuct\ Exsler

My exﬁaence: Diggle-Berman undersmooths
—_—
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Diggle-Berman
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Likelihood
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Cypress: Diggle, likelihood
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Modeling A(s) as a function of covariates

@ imagine have X(s) at every possible location s
@ examples of potential X(s):
o geographic coordinates (x,y):
"~ o
GH"C e elevation from DEM -
o areal data -
"o e.g. A(s) = exp(fBo + Brelev(s))
t log A(s) = /
N o or log A(s) = Bo + Brelev(s) ¢ GL
e but this is estimated and is not the “true” X
o creates complicated issues (error in covariates problem)

distance to field edge or hazardous waste site
@ A(s) >0, so a plausible model is A(s) = ex
O\Q ekriged surface based on geostat data - ;?f‘/
- (s)
T~
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Modeling A(s) as a function of covariates

e Data are locations of events
e anticipate A(s) larger at those locations than elsewhere
o To get started, imagine 10 1x1 quadrats:

o observe an event in 2 of them and not in 8 of them X @J\ b
o Use maximum likelihood to estimate A(s;) for each quadrat

e Model Y; ~ &)_i_S_g(A(S, e Y‘&

_— ) /!
CDW‘* 3 e M) \(s;)Yi
e 2 = S
Y - i
l 0§ log L(A(s1) | Y;) = —A(si) + Yilog (A(s1)) — log ;!
o event quadrats (Y; =1): log L = —\(s;) +log (A(si)) — 0
e non-event quadrats (Y; =0): log L = =A(s;) +0—0

e So, log L =3 s log(A(si)) — Za,,)\(s,)
@ Include covariates by modeling )\(s,) %

e A(s;) >0, so model log A(s;) = X3

A(oﬁ
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Modeling A(s) as a function of covariates

e 10 quadrats: log L = > enss 108 (A(si)) — D, Alsi)
@ Now: make quadrats smaller and smaller.

o Still 2 event locations, Many “all” locations

o Event locations still a sum (event is a point)

o All locations become’an integral >~ A(s;) = [, A(u)du
AT

@ log likelihood for an inhomogeneous Poisson process

C‘UW}

IogL—ZlogAs, /A du

@ When A(s) depends on elevation,
A(s;) = exp(Bo + B1 elev(s;)), n events

Iog L= Z[ﬁo + ﬂlelev(s,)] - / exp (So + Prelev(u))du

i=1"—
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Modeling A(s) as a function of covariates

o Estimate log intensity function by finding the parameter values that
maximize the log likelihood

@ When A(s) is constant (CSR, homogeneous Poisson process):

= “nfog A — A[|A]|

d logL n
n 4 eor
Al e

bvious” estimator of A for HPP, n/||A||, is an ML estimator

e Maximizing log A(s) = Bo + Bielev(s) requires numeric maximization,

no analytical solution

Spatial Data Analysis - Part 6b
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Modeling A(s) as a function of covariates

@ |Is this useful?
o Yes - likelihood is the most common estimator / test method, when
you move away from normal distributions
e Many of the “usual” methods are ML or refinements of ML
o Discovering that “obvious” estimator of A for HPP, n/||A]|, is an ML
estimator tells you a lot: —
o All the general properties of ML estimators apply:

o Estimates are consistent (get closer to true values as sample size
increases) —

e Asymptotic normal (have normal sampling distributions for suitably
large sample sizes)

e Variance from Fisher or observed information (so can easily compute
Var (1

@ log L is the foundation for model selection statistics: AIC, AlCc, BIC
—_
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Modeling A(s) as a function of covariates

Is this useful?

Notice the practical problem: Need a lot of covariate information,

both:
o Covariate values (e.g., elevation) at the event locations
o Very commonly have X(s) at event locations

o AND covariate values everywhere else in the study area

No problem when A is a function of coordinates (e.g., trend surface)

Otherwise looks intractable: X(s) at every s?
Actually only need to estimate / approximate

Saexp (Bo + 1X(u))du
'_._-___‘_—-__-—-'_ -
s 7@ Often approximate by values at a grid:

> i leridcellllexp (5o + BuX()) o< €| “gT0 @ )

o Or by'vaiues at a simpletandom sample of locations:
”A” Zsample [EXP (ﬁO + ﬁ1X(U))] /nsample

—
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An aside: MAXENT modeling of species distributions

e MAXENT is a very popular algorithm / software program for
modeling species distributions
e Given GIS images with elevation, precipitation, ....
0 —_— 0
e and location recorg% where a species has been found
o predict P[species occurs at a new location | covariates]

Often called niche or species distribution modeling
Phillips et al., 2006, Ecol. Model. 190:231-259

Developed from maximum entropy principles (machine learning
technique)

Very popular because does not require explicit samples of absences

Data collection for usual logistic regression:
o Random sample of locations
o Visit anjpbserve whether species present or abgent
o Simple statistical model, practically impossibie
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An aside: MAXENT modeling of species distributions

@ Wharton and Shepherd (2010, Ann. Appl. Statistics 4:1383-1402)
showed that the quantity maximized by MAXENT is the IPP log
likelihood

e Provided immediate answers to difficult questions about MAXENT,
such as role of “pseudo-absences”

@ However, appropria'm_rl\/lAXENT demands specific sort of data
e random sample of presences

o good estimate of background prevalence {[35 N 7 M
DatReTRTY PrEve T -

o Critical review of assumptions: vt

o Royle, J.A. et al. 2012, Methods in Ecology and Evolution,
3(3):545-554
@ And data are often not “the right sort”
o Review of many applications of MAXENT
Yackulik, C. et al. 2013, MEE 4(3):246-243.
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Modeling spatial patterns

M bgﬁf at

e Historically (through 2000 or later)
o Classify pattern as clustered, random, segregated
@ Current best practice, more insightful:
e model the spatial pattern,
o learn more about the characteristics of the clusters or the regularity
e not just clustering: yes/no?, regular: yes/no?
@ Many different models for spatial point patterns
o | will only talk about two to illustrate what can be done.
o Chapter 6 of Diggle's spatial point pattern book describes many more.
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Estimating seed dispersal distance

@ How far are seeds moved away from mom?

Plant produces seeds

In most plants, those seeds are dispersed away from mom.
Higher survival/growth if not really close to mom.

How far do they move?

o very very difficult to measure directly

@ If mom'’s are widely spaced, and you know the location of mom, can
look at locations of seedlings to estimate directly (picture on next
slide)
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The problem gets harder

@ In previous plot, seedling distribution “looks” like short-distance
dispersal.
reasonable to assume points around a mom all came from that mom
@ What about next plot?
@ Which seedlings belong to each mom?
@ not clear
e genetic markers sometimes help, but expensive~
@ And what if the plant is an annual, so when you can see the seedlings,
you don't know where mom was? (2nd plot)
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Neyman—Scott process for clustered events

= (abudin
ijZ'j M@W\Q:@akm 54

@ a very general model

e mothers are CSR with an intensity k

o daughters have a specified distribution of distance from mom
often bivariate normal (0, o) = Thomas process
another common choice:

uniform w/i disk of radius r = Matern cluster process
e with a Poisson # of daughters per mom, with mean p
————————— . —_—
e only observe daughter locations, not mom
o parameters are[k, 02, and pfork, r, and u
@ Pictures and K fur%loﬂ’m—ixt slide
Yot
Thome!
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Matern Clust process
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N 4 - T kSt

. : - 20
o key parameter in seed dispersal question is 0% (or r) /
@ For many N-S-type processes, can calculate (or look up) theoretical
2 N z

K(xIk, 0%, and ) QR o

@ So, estimate k, o2, and w by finding the theoretical K(x) that is
closest to the K(x) computed from the events

@ How to determine “closest”?

o Commonly use least-squares estimation: “minimum contrast”
S — —
estimation

2
e i.e. minimize ¥ [K(x) — K(x| k,az,,u)]
ol l—= = == —

o problem here is that Var K(x) is not constant
e so LS would “pay more attention” to distances x with large variances
because LS assumes all distances have the same variance
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@ Dealing with unequal Var R(x): Diggle and Gratton suggest

(= [l Rt - kx| e )

@ This is like the Cressie-Hawkins variogram estimator,

e Using 1/4 power to control the variance
e Don't need the C-H denominator because comparing two functions.

o Calculating theoretical K X! usually requires integration \’_ gg
@ Q: What if you can't do that integration analytically? (K(ﬁ &'.g’@-“‘
@ A: calculate a Monte-Carlo approximation to that integral —

e simulate process | k, o,
o calculate K(x)
o repeat above 2 steps many times (1000?) and average to estimate
K(x | k.q? 1)
—_— e R
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Cypress trees in Savannah River Swamp
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Modeling clustering of cypress trees

@ Matern process: N-S process in which daughters are randomly
distributed within a disk with radius R

@ Theoretical K(x) for a Matern process O
Ko = met [ 10/2R) Y S «
pulal K

where h() is a known function, details not important

o fitting this model to the cypress locations gives:
o k=00024 nsen's — Hgyents /1O 0O
o R=1201 (7~ ’
° =370 o) kCBS:

@ Interpretation:

o a total of 24 = 0.0024*area = 0.0024*50*200 cIustersl

e each with radius 12m and containing 3.7 trees
———2 —_——
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Modeling clustering of cypress trees
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Modeling clustering of cypress trees

@ Many different N-S processes, differing in the distribution of
daughters around mom

e Thomas process: daughters (what you see) ~ N(0, c?) around unseen

mom
@ Estimates are similar:
o k=0.0027 -
e 52 =136.09- \ |
° i=3.40- ALy T \RLS
@ Interpretation: —_— P

a total of 27 = 0.0027*area = 0.0027*50*200 clusters
clusters containing 3.4 trees on average

o
C{/bq o have sd of 6.1m, so 95% of trees within 2.45s5 = 15.0m.
%" o where does 2.45 come fromT—
o cluster is isotropic, so distance?/o® ~ Chi(2)
e 0.95 quantile of Chi(2) =5.99.
o V/5.00 =245
e Approximate calculation, ignores uncertainty in s>
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Modeling clustering of cypress trees
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A process with inhibition

@ Point patterns that tend to be regular

@ there are many of these - | will use Strauss process as an illustration

@ consider sequentially simulating points

@ remember def'n of a Poisson process: Plevent in dA] does not depend
on presence / absence of any other events ,}\MMJ\@“CQ_

e to get inhibition, a nearby point reduces P[event in dA]

@ Strauss process with interaction radius of r

count number of already existing events in that circle -
if n =0, keep the event (intensity is \) -
if n > 0, keep the event with probability v" (intensity | other ev

n
s

e generate the tentative location of an event using a P|§,son process
with intensity A e X 1* >
draw a circle of radius r around the tentative location

IS

Ay
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Interpreting a Strauss process

» tad g 9% mea
@ Characteristics of the process depend on r and especially v
e v = 0: hard-core process. No event allowed w/i distance r of another
e 0 < < 1: soft-core process. Events w/i distance r are less likely.
e ~ = 1: no inhibition, Poisson process

@ Three parameters in this model:
o r:_radius of interaction
e ~: strength of inhibitation
= . .
o [3: related to overall intensity (# of events)

—_—
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Hard Core Strauss
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Estimating parameters in an inhibition model

Z g ™

elet3
e Can write down an approximation to K(x)
e use as we did for a cluster process
@ Or use likelihood:
@ Likelihood for CSR or inhomogeneous Poisson process is easy to write
down —
@ InL is a sum because points are independent

e Hard to write down log L for processes with inhibition
o Need joint distribution of all events, not sum of independent pieces
e And even harder to maximize
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Estimating param. of a process with inhibition

@ Two issues:

e log Likelihood is not a sum of independent pieces
e hard to find maximum for some parameters

@ Solutions (as of now, not the final word):
e 1) pseudolikelihood
e Approximate the joint distribution: g
el
r ot

f(Yl, YQ, ey Yn | 9) ~ f(Yl‘Yfl,H)f(YﬂY,Q,@) e f(Y,,IY,n,g)
~ - - LK

where Y_; means without event Y;

o resulting InL is: ?SC L,\alo hL(ﬁ\.‘l’)Dbj\
log L(6 | Vi, Ya,- -+, Ya) = £7_, log L(6, Y; | Y_;)

e leads to good estimates but Var 6 badly estimated
e so bad tests, confidence intervals—
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Estimating param. of a process with inhibition

e 2) profiling over r

e no analytical equations for MLE's of a Strauss process

e have to numerically maximize

@ turns out to be easy to maximize InL forh:_y“andﬁ,@"_,q not fot_r_

o ris called an irregular parameter. very hard to find a maximum, even
numerically ~———

e Solution: profile likelihood

o pick a value of r, find 4 and j that maximize log L(v,3 | Y,r), i.e.
fixed value of r

e repeat for various values of r

o find the “best” value of r (at least approximately).

e that is 7, use corresponding 4 and B

—
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Combining pattern and trend

@ Example point pattern:

1.0
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Combining pattern and trend

Two possible interpretations

e Events are independent, intensity varies
o Intensity is constant, events are clustered

© Remember geostats: trend + spatial correlation
e No unique decomposition based on the data alone

Same thing with a point pattern
e Can construct two processes with exactly the same K(x) function

e One is varying intensity, independent events
e One is constant intensity, clustered events
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Combining patterns and trend

@ Usual solution: relies on covariates

e Trend is something you can predict from covariates
o Pattern is what is left over

@ Examining pattern when intensity not constan/ﬁ) i * euetz

¥ < Adjust estimator - wosd oo, A
° Inhomogeneous K(x): = G o0r.

Test Ri(x) = —— Mdy <x) Lol 4

E]Lam.'uc Pa.+|{'vwl ! - ||AH o WU)\(SI))\(SJ) — <
plot k() "= == esfuate N

o Note: when A(s) constant = n/||A|| get usual K(x) pede( &[),rm (

[IA[ I(dj < x) coves .‘a_ﬁg
W Kerael Suvath

0‘4[’] o Adjust expectation — pl.ll ["‘]P’Af’ﬁa iarjc bo‘-«ﬂwdﬂ-
k'ﬁ_'L' e Fit trend model )\(s

o simulate inhomogeneous Poisson process with that A(s) surface
=

K(x)

A nho
"Po;"zs,{__ o Compute K(x), repeat

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 6b Spring 2020 43 /44



Combining patterns and trend

@ Modeling patterns and trend simultaneously

/
o Inhibition / segregation “ge seale

o Pseudolikelihood: Easy to include trend and inhibitation

o Clustering Stall seale
o Not settled: current usual practice is to estimate A(s) as function of
covariates -

@ Use the inhomogenous K(x) estimator with that A(s)

o using minimum contrast to fit the clustering process
I .
daeg\ + war K LM’,“
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